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Résoudre les exercices suivants et justifier les réponses.

Exercice 1. Montrer que, si (a, b) est un couple de réels suffisamment proche de (1,−1),
le système d’équations suivant admet une solution :{

x ey + y = a

x ey − y = b.

Solution. On se donne la fonction F : R2 → R2 définie par

F (x, y) = (xey + y, xey − y).

Remarquons tout d’abord que F (0, 1) = (1,−1). De plus, F est lisse comme somme et
produit de fonctions lisses, et on a

Jf (x, y) =

(
ey xey + 1
ey xey − 1

)
,

qui a pour déterminant det Jf (x, y) = ey(xey − 1 − xey − 1) = −2ey. En particulier,
det Jf (0, 1) = −2e ̸= 0, et d’après le théorème d’inversion locale, F est un difféomorphisme
entre un voisinage de (0, 1) et un voisinage de (−1, 1). Cela répond donc à la question. □

Exercice 2. Montrer que l’équation

ex+yz + (x+ z) y2 + y = 2

détermine y comme une fonction de x et z au voisinage de x = z = 0, et calculer le gradient
de cette fonction en (0, 0).

Démonstration. On se donne la fonction F : R3 → R définie par

F (x, y, z) = ex+yz + (x+ z)y2 + y − 2.

C’est une fonction lisse comme somme, produit et composée de fonctions lisses, et on peut
calculer son gradient pour tout (x, y, z) ∈ R3 :

∇F (x, y, z) =

 ex+yz + y2

zex+yz + 2(x+ z)y + 1
yex+yz + y2

 .

En particulier, pour (x, y, z) = (0, 1, 0), on a F (0, 1, 0) = 0, et

∇F (0, 1, 0) =

2
1
2

 .

En particulier ∂F
∂y (0, 1, 0) = 1 ̸= 0, donc d’après le théorème des fonctions implicites, au

voisinage de (0, 1, 0), on peut écrire y en fonction de x et z. On a ensuite d’après le cours
(que l’on peut retrouver en calculant la différentielle de (x, z) 7→ F (x, y(x, z), z))

∂y

∂z
(0, 0) = −

∂F
∂z (0, 1, 0)
∂F
∂y (0, 1, 0)

= −2.



□

Exercice 3. On considère la surface S d’équation F (x, y, z) = 0 pour F (x, y, z) = x2+yez.

a) Montrer que pour tout (x, y, z) ∈ R3, ∇F (x, y, z) est orthogonal au plan tangent à S
en (x, y, z).

b) Trouver l’ensemble des points (x, y, z) de S pour lesquels le plan tangent est orthogonal

au vecteur w =

 2
−1
3

.

Solution. a) L’équation du plan tangent à S en (x, y, z) est donnée par

∂F

∂x
(x, y, z)(x′ − x) +

∂F

∂y
(x, y, z)(y′ − y) +

∂F

∂z
(x, y, z)(z′ − z) = 0,

ce qui se réécrit

⟨∇F (x, y, z), v⃗⟩ = 0,

où v⃗ = ⃗PP ′, avec P le point de coordonnées (x, y, z) et P ′ le point de coordonnées
(x′, y′, z′). Or, par définition, tout vecteur tangent est de cette forme, donc on en déduit
bien que ∇F (x, y, z) est orthogonal à tout vecteur tangent à S en (x, y, z), et a fortiori
au plan tangent tout entier.

b) D’après la question précédente, cela revient à trouver (x, y, z) tel que ∇F (x, y, z) est
colinéaire à w. Or

∇F (x, y, z) =

 2x
ez

yez

 ,

donc il s’agit de trouver l’ensemble des λ ∈ R∗ et des (x, y, z) tels que F (x, y, z) = 0 et 2x = 2λ
ez = −λ
yez = 3λ.

Cela donne x = λ = −ez et yez = 3λ = 3x. En particulier, yez = −3ez donc y = −3.
Or, comme (x, y, z) ∈ S on doit avoir F (x,−3, z) = 0, ce qui donne

x2 − 3ez = 0 = (−ez)2 − 3ez = ez(ez − 3),

donc z = ln(3). Enfin on en déduit que x = −ez = −3, d’où (x, y, z) = (−3,−3, ln(3)).
□

Exercice 4. On considère deux surfaces S et T de R3 : S est la surface d’équation
x2 + y2 − z = 0, et T est la surface paramétrée par :

σ : R2 → R3

(u, v) 7→ (u2 − v2, 2uv, u+ v).

a) Déterminer un vecteur normal à S en un point p ∈ S.

b) Déterminer les points réguliers du paramétrage σ, et un vecteur normal NT (u, v) en
tout point régulier q = σ(u, v).

c) Déterminer l’ensemble des couples (p, q) ∈ S × T tels que les plans tangents en p et en
q soient parallèles.

Solution. a) Un vecteur normal à S en p est par exemple ∇F (p) (cf. Exercice 3), c’est-à-
dire, si p = (x, y, z),

∇F (p) =

2x
2y
−1

 .



b) Pour déterminer les points réguliers du paramétrage, regardons la jacobienne de σ :

Jσ(u, v) =

2u −2v
2v 2u
1 1

 .

Si u ̸= v, alors ∣∣∣∣2v 2u
1 1

∣∣∣∣ = 2(v − u) ̸= 0

et la jacobienne est de rang 2. Si u = v, alors∣∣∣∣2u −2v
1 1

∣∣∣∣ = 2(u+ v),

et le déterminant est non nul si (u, v) ̸= (0, 0). Donc tout point (u, v) ∈ R2 \ {(0, 0)}
est un point régulier du paramétrage. En revanche, on peut vérifier que pour (0, 0) la
jacobienne n’a aucun mineur de rang 2 non nul donc ce n’est pas un point régulier.
Le plan tangent en q = σ(u, v) est notamment engendré par σ1(u, v) = ∂σ

∂u (u, v) et

σ2(u, v) =
∂σ
∂v (u, v), et le vecteur NT (u, v) = σ1(u, v)× σ2(u, v) est par construction un

vecteur normal. On obtient

NT (u, v) =

2u
2v
1

×

−2v
2u
1

 =

 2(v − u)
−2(u+ v)
4(u2 + v2)

 .

c) Pour que les plans tangents en p et q soient parallèles, il suffit que les vecteurs normaux
soient colinéaires. On cherche donc à résoudre

∇F (p) = λNT (u, v),

pour un certain λ ∈ R∗. Cela revient à trouver (x, y, z) ∈ S et (u, v) ∈ R2 tels que2x
2y
−1

 =

 2λ(v − u)
−2λ(u+ v)
4λ(u2 + v2)

 .

On trouve u2 + v2 = − 1
4λ donc (u, v) se trouvent sur un cercle de rayon R > 0, et on a

λ = − 1
4R . à partir de là, on peut exprimer x et y à l’aide de (u, v) :

x =
u− v

2(u2 + v2)
, y = − u+ v

2(u2 + v2)
,

et enfin on peut retrouver z à partir de l’équation de S :

z = x2 + y2 =
(u− v)2 + (u+ v)2

4(u2 + v2)2
=

1

4(u2 + v2)
.

On peut enfin tout réexprimer en termes de coordonnées polaires u = R cos θ, v =
R sin θ, et on obtient

p =

 cos θ−sin θ
2R

− cos θ+sin θ
2R
1

4R2

 , q =

R2(cos2 θ − sin2 θ)
2R2 cos θ sin θ
R(cos θ + sin θ)

 ,

pour tout R > 0 et tout θ ∈ [0, 2π].
□

Exercice 5. Calculer l’aire de la portion du plan P d’équation 2x + y + z = 3 qui se
trouve dans le premier octant, c’est-à-dire dans l’espace (R+)

3 des points dont les trois
coordonnées sont positives ou nulles.



Solution. On commence par trouver un paramétrage du plan, en écrivant z en fonction de
x et y, c’est-à-dire z = 3 − 2x − y. On obtient σ(s, t) = (s, t, 3 − 2s − t). La portion qui
nous intéresse correspond à

Σ = {(s, t) ∈ [0,∞)2 : 3− 2s− t ≥ 0}.

En particulier on voit que s ∈ [0, 32 ], t ∈ [0, 3], de sorte que

Σ = {(s, t) ∈ (R+)
2 : 0 ≤ s ≤ 3

2
, 0 ≤ t ≤ 3− 2s}.

On pose

σ1(s, t) =
∂σ

∂s
(s, t) =

 1
0
−2

 ,

σ2(s, t) =
∂σ

∂t
(s, t) =

 0
1
−1

 ,

et on a

σ1(s, t)× σ2(s, t) =

2
1
1

 ,

et on a alors

A(Σ) =

∫ 3
2

0

(∫ 3−2s

0
∥σ1(s, t)× σ2(s, t)∥dt

)
ds =

√
6

∫ 3
2

0

(∫ 3−2s

0
dt

)
ds.

On calcule l’intégrale :

A(Σ) =
√
6

∫ 3
2

0
(3− 2s)ds

=
√
6[3s− s2]

3
2
0

=
9
√
6

4

□

Exercice 6. Considérons la couronne :

U = {(x, y) ∈ R2 | 1 <
√

x2 + y2 < 2},

et la 1-forme ω ∈ Ω1(U) suivante :

ω =
(x− y) dx+ (x+ y) dy

x2 + y2
.

a) Vérifier que ω est fermée.

b) Montrer que ω n’est pas exacte sur U . Indication : raisonner par l’absurde et intégrer
ω le long d’un cercle contenu dans U .

Solution. a) Soit (x, y) ∈ U . On a ω(x, y) = P (x, y)dx+Q(x, y)dy avec

P (x, y) =
x− y

x2 + y2
, Q(x, y) =

x+ y

x2 + y2
,



donc

dω =dP (x, y) ∧ dx+ dQ(x, y) ∧ dy

=
∂P

∂x
(x, y)dx ∧ dx+

∂P

∂y
(x, y)dy ∧ dx+

∂Q

∂x
(x, y)dx ∧ dy +

∂Q

∂y
(x, y)dy ∧ dy

=

(
∂Q

∂x
(x, y)− ∂P

∂y
(x, y)

)
dx ∧ dy.

Or

∂P

∂y
(x, y) =

−(x2 + y2)− 2y(x− y)

(x2 + y2)2
=

−x2 + y2 − 2xy

(x2 + y2)2
,

∂Q

∂x
(x, y) =

x2 + y2 − 2x(x+ y)

(x2 + y2)2
=

−x2 + y2 − 2xy

(x2 + y2)2
,

d’où le fait que dω(x, y) = 0.

Note : on peut aussi le démontrer en passant par les coordonnées polaires : si ϕ :
(r, θ) 7→ (r cos θ, r sin θ), alors

ϕ∗ω =
cos θ − sin θ

r
(cos θdr − r sin θdθ) +

cos θ + sin θ

r
(sin θdr + r cos θdθ

ϕ∗ω =
cos θ − sin θ

r
(cos θdr − r sin θdθ) +

cos θ + sin θ

r
(sin θdr + r cos θdθ)

=
1

r
dr + dθ,

de sorte que
ϕ∗(dω) = d(ϕ∗ω) = 0.

b) Raisonnons par l’absurde : si ω était exacte, alors il existerait f : U → R telle que
ω = df , donc d’après le théorème de Stokes, on aurait pour toute courbe fermée C dans
U , paramétrée par γ : [0, 1] → R2,∫

C
ω =

∫
C
df =

∫
[0,1]

γ∗df =

∫
[0,1]

d(f ◦ γ) = f(γ(1))− f(γ(0)) = 0.

Prenons un cercle CR de rayon R ∈]1, 2[, paramétré par γ : [0, 2π] → R2, θ 7→
(R cos θ,R sin θ). On a

γ∗ω =
(R cos θ −R sin θ)(−R sin θdθ) + (R cos θ +R sin θ) cos θdθ

R2

=(sin2 θ + cos2 θ)dθ

=dθ.

Il vient que ∫
CR

ω =

∫
[0,2π]

γ∗ω =

∫
[0,2π]

dθ = 2π.

On obtient une contradiction, donc ω n’est pas exacte sur U . Notons que ce n’est pas
en contradiction avec le lemme de Poincaré puisque U n’est pas simplement connexe.

□

Exercice 7. Considérons le domaine D ⊆ R2 dont la frontière est la réunions des deux
courbes C1 et C2 définie par :

C1 = {(x, y) ∈ [0, 1]× R | y2 = x2 − x3}, C2 = [0, 1]× {0}.
a) Rappeler la formule de Green. Comment peut-on appliquer cette formule pour exprimer

l’aire d’un domaine Ω ⊂ R2 quelconque comme une intégrale curviligne le long du bord
∂Ω?



b) Donner un paramétrage pour chacune des courbes C1 et C2.

c) Calculer l’aire de D.

Solution. a) La formule de Green nous dit que si D est un domaine lisse de R2 à bord
lisse, et si ω est une 1-forme sur R2, alors∫∫

D
dω =

∫
∂D

ω.

En particulier, l’aire d’un domaine Ω ⊂ R2 est donnée par l’intégrale de la forme
différentielle dx ∧ dy sur Ω, de sorte que

A(Ω) =

∫∫
Ω
dx ∧ dy =

∫
∂Ω

η,

pour n’importe quelle primitive η de dx∧ dy (par exemple, η = 1
2(xdy− ydx), η = xdy

ou η = −ydx conviennent).

b) On peut utiliser les paramétrages γ1 : [0, 1] → R2 et γ2 : [0, 1] → R2 repsectivement de
C1 et C2, définis par

γ1(t) = (t,
√

t2 − t3) = (t, t
√
1− t),

γ2(t) = (t, 0).

c) Pour calculer l’aire de D on utilise la question a) pour η = −ydx par exemple :

A(D) = −
∫
∂D

ydx,

en faisant attention à ce que le bord soit orienté dans le sens trigonométrique. Cela
implique de prendre un autre paramétrage de C2, donné par γ̃2(t) = (1 − t, 0), qui
renverse l’orientation de la courbe. On obtient

−
∫
∂D

ydx =−
∫
C1

ydx−
∫
C2

ydx

=

∫ 1

0
t
√
1− tdt− 0.

Pour calculer l’intégrale restante, on effectue le changement de variable u = 1 − t,
du = −dt, et∫ 1

0
t
√
1− tdt = −

∫ 0

1
(1− u)

√
udu =

∫ 1

0

√
udu−

∫ 1

0
u

3
2du.

On obtient finalement

A(D) =

[
2u3/2

3

]1

0

−

[
2u5/2

5

]1

0

=
2

3
− 2

5
=

4

15

□


