Université de Strasbourg Décembre 2025
U.F.R. de Mathématique et d’Informatique Carlo GASBARRI
Licence L3 2025/26 , Bases de la géométrie differentielle S5

Troisieme Controle Section mathématiques fondamentales

Durée de I’épreuve : 2h.

L’usage de calculatrices et de documents n’est pas autorisé.
Résoudre les exercices suivants et justifier les réponses.

Exercice 1. Montrer que, si (a,b) est un couple de réels suffisamment proche de (1, —1),
le systeme d’équations suivant admet une solution :

zely+y=a
xeY —y=nb.
Solution. On se donne la fonction F : R? — R? définie par

F(‘Tay) = (xey +y7‘rey - y)

Remarquons tout d’abord que F(0,1) = (1,—1). De plus, F' est lisse comme somme et
produit de fonctions lisses, et on a

e = (

qui a pour déterminant det Jr(x,y) = e¥(xze¥ — 1 — xe¥ — 1) = —2e¥. En particulier,
det J£(0,1) = —2e # 0, et d’apres le théoreme d’inversion locale, F' est un difféomorphisme
entre un voisinage de (0, 1) et un voisinage de (—1,1). Cela répond donc a la question. [

eY ze¥+1
ey zxe¥—-1)°

Exercice 2. Montrer que I’équation
et (x+2)y’ +y =2

détermine y comme une fonction de z et z au voisinage de = z = 0, et calculer le gradient
de cette fonction en (0,0).

Démonstration. On se donne la fonction F : R? — R définie par
F(z,y,2) = e + (z +2)y° +y — 2.

C’est une fonction lisse comme somme, produit et composée de fonctions lisses, et on peut
calculer son gradient pour tout (x,y,z) € R3 :

enchyz + y2
VF(z,y,z) = | 2" +2(x + 2)y + 1
yeeryz + y2

En particulier, pour (x,y,z) = (0,1,0), on a F'(0,1,0) =0, et

2
VF(0,1,0)= |1
2
En particulier %—5(0, 1,0) = 1 # 0, donc d’apres le théoreme des fonctions implicites, au
voisinage de (0,1,0), on peut écrire y en fonction de x et z. On a ensuite d’apres le cours

(que 'on peut retrouver en calculant la différentielle de (x, z) — F(z,y(z, 2), 2))

OF
0,1,0

gy(o,o) - _7%( ) _
z 3, (0,1,0)



g

Exercice 3. On considere la surface S d’équation F(x,y,2) = 0 pour F(x,y,2) = 22 +ye?.

a) Montrer que pour tout (x,y,2) € R?, VF(z,y, z) est orthogonal au plan tangent a S
en (z,y, 2).
b) Trouver I’ensemble des points (z,y, z) de S pour lesquels le plan tangent est orthogonal
2
au vecteur w = | —1

3

Solution. a) L’équation du plan tangent & S en (z,y, z) est donnée par

OF , OF , OF .
Ox (.ﬁU,y,Z)(.T) —$)+ 8y (J?,Z/,Z)(y _y)+ Oz (;vavz)(z —Z) _Oa

ce qui se réécrit

<VF($7 Y, Z)a U> = 07

ou ¥ = PP , avec P le point de coordonnées (z,y,2) et P’ le point de coordonnées
(2',y,2"). Or, par définition, tout vecteur tangent est de cette forme, donc on en déduit
bien que VF(z,y, z) est orthogonal a tout vecteur tangent & S en (x,y, ), et a fortiori
au plan tangent tout entier.

b) D’apres la question précédente, cela revient a trouver (x,y, z) tel que VF(z,y, z) est
colinéaire a w. Or

2x
VE(,y,z)= | € |,
ye”
donc il s’agit de trouver I’ensemble des A € R* et des (z,v, 2) tels que F(z,y,2z) =0 et
20 = 2\
e = =
yer = 3\

Cela donne z = A = —e? et ye® = 3\ = 3z. En particulier, ye* = —3e* donc y = —3.
Or, comme (z,y, 2) € S on doit avoir F(z,—3,2) =0, ce qui donne
2% —3e* =0 = (—€*)? — 3¢ = e*(e* — 3),

donc z = In(3). Enfin on en déduit que x = —e* = =3, d’ou (z,y, 2) = (-3, —3,1n(3)).
O

Exercice 4. On considére deux surfaces S et T de R? : S est la surface d’équation
22+ 9> — 2 =0, et T est la surface paramétrée par :
o: R? SRS

22, 2uv, u+v).

(u,v) = (u
a) Déterminer un vecteur normal & S en un point p € S.

b) Déterminer les points réguliers du paramétrage o, et un vecteur normal Np(u,v) en
tout point régulier ¢ = o(u,v).

¢) Déterminer I’ensemble des couples (p,q) € S x T tels que les plans tangents en p et en
q soient paralléles.

Solution. a) Un vecteur normal & S en p est par exemple VF(p) (cf. Exercice 3), c’est-a-
dire, si p = (z,y, 2),



b)

Pour déterminer les points réguliers du paramétrage, regardons la jacobienne de o :

2u —2v
Jo(u,v) = | 2v  2u
1 1
Si u # v, alors
2v 2u
1 1= 2(v—u) #0
et la jacobienne est de rang 2. Si u = v, alors
2u —2v
1 1 - 2(“ + U)v

et le déterminant est non nul si (u,v) # (0,0). Donc tout point (u,v) € R?\ {(0,0)}
est un point régulier du paramétrage. En revanche, on peut vérifier que pour (0,0) la
jacobienne n’a aucun mineur de rang 2 non nul donc ce n’est pas un point régulier.
Le plan tangent en ¢ = o(u,v) est notamment engendré par oj(u,v) = %(u,v) et

oa(u,v) = %(u, v), et le vecteur Np(u,v) = o1(u,v) X o2(u, v) est par construction un

vecteur normal. On obtient

2u —2v 2(v —u)
Nr(u,v)=[2v | x| 2u | = —2(u+v)
1 1 4(u? + v?)

Pour que les plans tangents en p et g soient paralléles, il suffit que les vecteurs normaux
soient colinéaires. On cherche donc a résoudre

VF(p) = ANz (u,v),

pour un certain A € R*. Cela revient & trouver (z,y,2) € S et (u,v) € R? tels que

2x 2A (v — u)
2y | = | —2A(u+v)
-1 AN (u? +v?)
On trouve u? 4+ v% = —ﬁ donc (u,v) se trouvent sur un cercle de rayon R > 0, et on a
A= —ﬁ. a partir de la, on peut exprimer x et y a l'aide de (u,v) :
uU—v U+ v
T =75 57 Y= —c—5 5
2(u? +v?) 2(u? +v?)
et enfin on peut retrouver z a partir de I’équation de S :
2 2
— 1
z:x2+y2:(u v+ (utv)® ‘
4(u? + v2)? 4(u? +v?)

On peut enfin tout réexprimer en termes de coordonnées polaires u = Rcosf,v =
Rsin6, et on obtient

% R%(cos? 0 — sin? 0)
p= _COS%%H(’ ., q= 2R? cosfsin ,
. R(cosf + sin )

pour tout R > 0 et tout 6 € [0, 27].
g

Exercice 5. Calculer 'aire de la portion du plan P d’équation 2x + y + z = 3 qui se
trouve dans le premier octant, c’est-a-dire dans I’espace (R, )3 des points dont les trois
coordonnées sont positives ou nulles.



Solution. On commence par trouver un paramétrage du plan, en écrivant z en fonction de
x et y, c’est-a-dire z = 3 — 2x — y. On obtient o(s,t) = (s,t,3 — 2s — t). La portion qui
nous intéresse correspond a

¥ = {(s,t) €[0,00)%:3 —2s —t > 0}.

En particulier on voit que s € [0, 3], ¢ € [0, 3], de sorte que

¥ = {(s,t) € (Ry)? 0§s§§,0§t§3—23}
On pose
o 1
Ul(svt): 88(8725): _02 )
0
oa(s,t) = ({;C;(s,t) = (11) ,
et on a

et on a alors
3

A(D) = /0g </032s lo1(5, ) az(s,t)||dt> ds — \/6/02 (/0328 dt> ds.

On calcule l'intégrale :
%
AX) =V6 / (3 —2s)ds
0

=635 — 52]§

G
4

Exercice 6. Considérons la couronne :
U={(z,y) eR* |1 < Va2 +y2 <2},
et la 1-forme w € Q1(U) suivante :

(x —y)dr+ (z+y)dy
2 + 12 '

a) Vérifier que w est fermée.

b) Montrer que w n’est pas exacte sur U. Indication : raisonner par l’absurde et intégrer
w le long d’un cercle contenu dans U.

Solution. a) Soit (z,y) € U. On a w(z,y) = P(x,y)dz + Q(z,y)dy avec

r—y Tty
P(z,y) = m7 Qz,y) = ma



donc

dw =dP(z,y) A dx + dQ(z,y) N dy

ZP (x,y)dx N dx + gj(az y)dy A dz + ZQ (x,y)dx AN dy + gz?(a: y)dy A dy
~ () - G o)) d nay
Or
oP —(22+y?) -2z —y) —2®+y? -2y
ay V)= (22 + y?)? T @R
oQ w2 +y? —2x(r+y) —a?+y? -2y
%(x, )= (22 + 42)?2 T @2

d’ou le fait que dw(z,y) = 0.
Note : on peut aussi le démontrer en passant par les coordonnées polaires : si ¢ :
(r,0) — (rcos@,rsinf), alors

cosf —sin @ cosf + sind

P'w = 7(008 fdr — rsin 0do) + f(sin Odr + r cos 6d6
o*w :M(COS Odr — rsin 6df) + w(sin Odr + r cos 0d0)
r r
zldr + do,
”

de sorte que
0" (dw) = d(¢"w) = 0.
b) Raisonnons par P'absurde : si w était exacte, alors il existerait f : U — R telle que

w = df, donc d’apres le théoreme de Stokes, on aurait pour toute courbe fermée C' dans
U, paramétrée par v : [0,1] — R?,

Lo=[ar=[ star=[ daon=ram)-rao)=o
[0,1] [0,1]
Prenons un cercle Cr de rayon R €]1,2[, paramétré par v : [0,27] — R2 6 —

(Rcosf, Rsinf). On a

. (Rcosf — Rsinf)(—Rsin0df) + (R cosf + Rsin0) cos 0db

=(sin? 0 + cos® 0)do

=d6.
/ w—/ ’y*w—/ df = 2.
Cr [0,27] [0,27]

On obtient une contradiction, donc w n’est pas exacte sur U. Notons que ce n’est pas
en contradiction avec le lemme de Poincaré puisque U n’est pas simplement connexe.

O

Il vient que

Exercice 7. Considérons le domaine D C R? dont la frontiére est la réunions des deux
courbes C7 et Cy définie par :

Cy = {(z,9) €[0,1] xR | y* = 2* — 23}, Cy =1[0,1] x {0}.

a) Rappeler la formule de Green. Comment peut-on appliquer cette formule pour exprimer

l’aire d’un domaine Q C R? quelconque comme une intégrale curviligne le long du bord
on?



b) Donner un paramétrage pour chacune des courbes C; et Co.
c¢) Calculer l'aire de D.

Solution. a) La formule de Green nous dit que si D est un domaine lisse de R? & bord
lisse, et si w est une 1-forme sur R2, alors

Jh2=

En particulier, 'aire d’'un domaine 2 C R? est donnée par l'intégrale de la forme
différentielle dx A dy sur €2, de sorte que

sy~ [ aenar= [ o

pour n’importe quelle primitive n de dz A dy (par exemple, n = %(wdy —ydx), n = zdy
ou 11 = —ydx conviennent).

b) On peut utiliser les paramétrages v; : [0,1] — R? et 75 : [0, 1] — R? repsectivement de
C4 et C9, définis par

n(t) = & Vi2 = 1%) = (¢, tvV1 - 1),
2(t) = (£,0).

c¢) Pour calculer laire de D on utilise la question a) pour 7 = —ydx par exemple :

A(D) = — /6 ya,

en faisant attention a ce que le bord soit orienté dans le sens trigonométrique. Cela
implique de prendre un autre paramétrage de Co, donné par () = (1 — ¢,0), qui
renverse l'orientation de la courbe. On obtient

—/ ydx:—/ ydm—/ ydx
oD C1 Cy

1
:/ tv1—tdt — 0.

0

Pour calculer I'intégrale restante, on effectue le changement de variable u = 1 — t,
du = —dt, et

/Oltmdt:—/10(1—u)\/ﬁdu:/01\/Edu—/olugdu.

On obtient finalement

1 1
2u3/2 2u5/2 2 2 4
w157, [
0

3 )



