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L3 mathématiques fondamentales Bases de la géométrie différentielle

Contrôle continu no 2

Durée : 1 heure. Documents et calculatrice interdits. Une attention particulière sera
apportée à la rédaction. Le barème est indicatif et susceptible de changer.

Exercice 1. Soit C une courbe dans R2 définie par une équation polaire ρ = ρ(θ),
avec ρ une fonction C1 sur un intervalle I = [a, b] ⊂ R. Autrement dit, le paramétrage
cartésien de C est donné par (x(θ), y(θ)) = (ρ(θ) cos(θ), ρ(θ) sin(θ)), pour θ ∈ I.

1. Calculer la longueur de la courbe en fonction de ρ. (3 points)
2. Application : montrer que la spirale d’équation polaire ρ(θ) = ae−bθ avec a, b > 0,

définie pour θ ∈ [0,∞[, a une longueur finie et calculer celle-ci. (3 point)

Solution.

1. On part du paramétrage γ : I → R2 donné par

γ(θ) = (ρ(θ) cos θ, ρ(θ) sin θ).

On calcule γ′(θ) :

γ′(θ) = (ρ′(θ) cos θ − ρ(θ) sin θ, ρ′(θ) sin θ + ρ(θ) cos θ),

et on en déduit

∥γ′(θ)∥2 = ρ′(θ)2 + ρ(θ)2.

Ainsi, en utilisant la formule de la longueur d’un arc paramétré, si I = [a, b], on a

ℓ(γ) =

∫ b

a

∥γ′(θ)∥dθ =
∫ b

a

√
ρ′(θ)2 + ρ(θ)2dθ.

2. Soit T ≥ 0. Pour calculer la longueur de la courbe sur [0, T ], on applique la formule
de la question 1 (on peut aussi recalculer directement) :

ℓ(γ|[0,T ]) =

∫ T

0

a
√
b2 + 1e−bθdθ = a

√
b2 + 1

∫ T

0

e−bθdθ.

On calcule l’intégrale, ce qui donne

ℓ(γ|[0,T ]) = a

√
1 +

1

b2
(e0 − e−bT ) = a

√
1 +

1

b2
(1− e−bT ).

Pour obtenir la longueur totale, il suffit de faire tendre T vers l’infini. D’après la
formule précédente, il vient que

ℓ(γ) = lim
T→∞

ℓ(γ|[0,T ]) = a

√
1 +

1

b2
<∞.



Exercice 2. Soit C la courbe de paramétrage γ : [0, T ] → R3, t 7→ (cos(t),− sin(t), 2t),
pour un certain T > 0.

1. Calculer le vecteur tangent unitaire T (t) et la courbure k(t) en tout point de la
courbe. (2 points)

2. Montrer que l’angle entre T (t) et le vecteur u⃗ = (0, 0, 1) est constant. On dit que
γ est une hélice. (2 points)

Solution.
1. On applique les formules du cours :

T (t) =
1

∥γ′(t)∥
γ′(t), k(t) =

∥γ′(t)× γ′′(t)∥
∥γ′(t)∥3

.

On a en l’occurrence

γ′(t) = (− sin(t),− cos(t), 2), ∥γ′(t)∥2 = 5,

de sorte que

T (t) =
1√
5
(− sin(t),− cos(t), 2).

D’autre part,
γ′′(t) = (− cos(t), sin(t), 0),

donc
γ′(t)× γ′′(t) = −(2 sin(t), 2 cos(t), 1).

Il vient que ∥γ′(t)×γ′′(t)∥ =
√
5, et que k(t) =

√
5

5
√
5
= 1

5
. En particulier la courbure

est constante.
2. On calcule le produit scalaire ⟨T (t), u⃗⟩ pour u⃗ = (0, 0, 1) :

⟨T (t), u⃗⟩ = 2√
5
,

donc il ne dépend pas de t. Or, si l’on note θ(t) l’angle entre T (t) et u⃗ on a

⟨T (t), u⃗⟩ = ∥T (t)∥∥u⃗∥ cos(θ(t)) = cos(θ(t)) =
2√
5
,

ce qui montre que l’angle θ(t) est constant lorsque t varie.

Exercice 3. Soit C le graphe de la fonction f : x 7→ x sin( 1
x
) sur ]0, 1[.

1. Montrer que γ : (t) = (t, f(t)) est un paramétrage régulier de C. Peut-on étendre
ce paramétrage à [0, 1] ? (1 point)

2. On note L la longueur de C.
(a) Montrer que L ≥

∫ 1

0
|f ′(t)|dt. (1 point)

(b) On pose δ = π
6
. Montrer, pour tout k assez grand et tout t ∈

[
1

2kπ+δ
, 1
2kπ−δ

]
,

|f ′(t)| ≥ 1
2t

. (2 points)
(c) En déduire l’inégalité suivante pour un entier K ≥ 0 assez grand (2 points)

L ≥ 1

2

∑
k≥K

ln

(
2kπ + δ

2kπ − δ

)
.



(d) (Question bonus) En conclure que L = +∞. On pourra admettre que la série
harmonique

∑
k≥1

1
k

diverge. (2 points)

Solution.
1. Le fait que γ soit un paramétrage de C est une conséquence de la définition du

graphe d’une fonction. Il s’agit surtout de montrer qu’il est régulier. Cela découle
du fait que f est de classe C 1 sur ]0, 1[, et que γ′(t) = (1, f ′(t)) ̸= (0, 0) pour tout
t ∈]0, 1[. En revanche on ne peut pas étendre le paramétrage à t = 0 car f n’est
pas dérivable en 0 (elle reste néanmoins continue).

2. (a) Par définition,

L =

∫ 1

0

√
t2 + f ′(t)2dt,

or pour tout t ∈]0, 1[, t2 ≥ 0 donc

L ≥
∫ 1

0

|f ′(t)|dt.

(b) Calculons f ′(t) pour tout 0 < t < 1 :

f ′(t) = sin

(
1

t

)
− 1

t
cos

(
1

t

)
,

et lorsque 1
2kπ+δ

≤ t ≤ 1
2kπ−δ

, on a 2kπ − δ ≤ 1
t
≤ 2kπ + δ. Or, pour k ≥ 1 on

a donc 1
t
≥ 2π − δ > 1, donc

|f ′(t)| = | sin(1/t)− 1/t cos(1/t)| ≥ 1/t cos(1/t)− | sin(1/t)|.

Or pour tout x ∈]2kπ − δ, 2kπ + δ[, on a |x cosx| = x cos x ≥ x cos(δ) =
√
3
2
x,

et | sin x| ≥ sin δ = 1
2
, donc

|f ′(t)| ≥
√
3

2t
− 1

2
=

√
3− t

2t
≥ 1

2t
,

en utilisant le fait que t est très petit pour k assez grand.
(c) Soit K assez grand pour que l’inégalité de la question (b) soit vraie, et tel que

pour tout k ≥ K on ait [ 1
2kπ+δ

, 1
2kπ−δ

] ⊂]0, 1[. On a∫ 1

0

|f ′(t)|dt ≥
∑
k≥K

∫ 1
2kπ−δ

1
2kπ+δ

|f ′(t)|dt ≥
∑
k≥K

∫ 1
2kπ−δ

1
2kπ+δ

1

2t
dt,

et on peut calculer explicitement le terme de droite :

∑
k≥K

∫ 1
2kπ−δ

1
2kπ+δ

1

2t
dt =

1

2

∑
k≥K

[ln(t)]
1

2kπ−δ
1

2kπ+δ

=
1

2

∑
k≥K

ln

(
2kπ + δ

2kπ − δ

)
.

(d) Il reste à comparer deux séries terme à terme. Pour tout k ≥ K,

ln

(
2kπ + δ

2kπ − δ

)
= ln

(
1 +

2δ

2kπ − δ

)
∼ 2δ

2kπ
=

δ

kπ
.



Le terme général de la série qu’on veut calculer est donc équivalent à celui de
la série harmonique (à une constante près), qui diverge, donc la série de terme
général

ln

(
2kπ + δ

2kπ − δ

)
diverge, et on en déduit bien que L = +∞.

Exercice 4. Soit T la surface décrite par l’équation implicite suivante (il s’agit d’un
tore de révolution), pour 0 < r < R :(√

x2 + y2 −R
)2

+ z2 = r2.

1. Montrer que σ : [0, 2π]× [0, 2π] → R3 défini par

σ(θ, ϕ) = ((R + r cos θ) cosϕ, (R + r cos θ) sinϕ, r sin θ)

est un paramétrage régulier de T. (2 points)
2. Donner un paramétrage du plan tangent à T au point (r +R, 0, 0). (2 points)

Solution.
1. On pose x(θ, ϕ), y(θ, ϕ), z(θ, ϕ) les coordonnées de σ. On vérifie que ces coordon-

nées satisfont l’équation du tore :

x(θ, ϕ)2 + y(θ, ϕ)2 = (R + r cos θ)2,

donc (√
x(θ, ϕ)2 + y(θ, ϕ)2 −R

)2

+ z(θ, ϕ)2 =(R + r cos θ −R)2 + r2 sin2 θ

=r2(cos2 θ + sin2 θ)

=r2,

donc c’est bien un paramétrage. Montrons qu’il est régulier :

Dσ(θ, ϕ) =

−r sin θ cosϕ −(R + r cos θ) sinϕ
−r sin θ sinϕ (R + r cos θ) cosϕ

r cos θ 0

 .

Pour montrer queDσ(θ, ϕ) est de rang 2, il suffit de montrer qu’un déterminant 2×
2 d’une de ses sous-matrices est non nul, et c’est le cas : les différents déterminants
sont ∣∣∣∣−r sin θ cosϕ −(R + r cos θ) sinϕ

−r sin θ sinϕ (R + r cos θ) cosϕ

∣∣∣∣ = −r(R + r cos θ) sin θ,

qui s’annule uniquement si θ = kπ pour k ∈ Z,∣∣∣∣−r sin θ cosϕ −(R + r cos θ) sinϕ
r cos θ 0

∣∣∣∣ = −r(R + r cos θ) cos θ sinϕ,

qui s’annule uniquement si θ = π/2 + kπ ou ϕ = kπ pour k ∈ Z, ou encore∣∣∣∣−r sin θ sinϕ (R + r cos θ) cosϕ
r cos θ 0

∣∣∣∣ = −r(R + r cos θ) cos θ sinϕ,

qui s’annule uniquement si θ = π/2 + kπ ou ϕ = π/2 + kπ, pour k ∈ Z. Il vient
que pour tout couple (θ, ϕ), au moins un de ces déterminants est non nul.



2. Un paramétrage du plan tangent T(R+r,0,0)T est donné par

η : (s, t) 7→ σ(θ0, ϕ0) + sψ′
1(θ0) + ψ′

2(ϕ0),

où
ψ1 : θ 7→ σ(θ, ϕ0), ψ2 : ϕ 7→ σ(θ0, ϕ).

Il s’agit donc d’abord de déterminer (θ0, ϕ0) tel que σ(θ0, ϕ0) = (r + R, 0, 0). Il
s’agit clairement de θ0 = 0 et ϕ0 = 0. Ensuite, on peut calculer ψ1 et ψ2 :

ψ1(θ) = (R + r cos θ, 0, r sin θ), ψ2(ϕ) = ((R + r) cosϕ, (R + r) sinϕ, 0).

Leurs dérivées respectives sont les suivantes :

ψ′
1(θ) = (−r sin θ, 0, r cos θ), ψ′

2(ϕ) = (−(R + r) sinϕ, (R + r) cosϕ, 0).

Finalement, on obtient que

η(s, t) = (R + r, (R + r)t, rs), ∀s, t ∈ R.

Remarque : à partir du paramétrage on peut noter que le plan correspond au plan
d’équation

T(R+r,0,0)T = {(x, y, z) ∈ R3 : x = R + r}.


