Contrôle continu nº 1

Durée : 1 heure. Documents et calculatrice interdits. Une attention particulière sera apportée à la rédaction. Le barème est indicatif et susceptible de changer.

Exercice 1. On considère la fonction $F: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$F(u, v, w) = (e^{u} \cos(v), e^{u} \sin(v), w + \cos^{2}(v)).$$

- 1. Montrer que pour tout $(u, v, w) \in \mathbb{R}^3$, F est un difféomorphisme local. (3 points)
- 2. Montrer que F n'est pas un difféomorphisme global sur \mathbb{R}^3 . (2 points)

Exercice 2. On considère la fonction $F: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $F(x,y) = (e^{x+y}, x-y)$.

- 1. Calculer sa jacobienne en tout point. (1 point)
- 2. Montrer qu'il existe un voisinage $U \subset \mathbb{R}^2$ de (0,0) et un voisinage $V \subset \mathbb{R}^2$ de (1,0) tels que $F|_U: U \to V$ soit un \mathscr{C}^1 -difféomorphisme. On note $F^{-1}: V \to U$ le difféomorphisme réciproque. (1 point)
- 3. Calculer $DF^{-1}(u,v)$ pour tout $(u,v) \in V$. Indication : calculer $D(F \circ F^{-1})$ de deux manières. (3 points)

Exercice 3. On considère l'équation $x - y + e^{x^2 \sin(y)} = 1$ sur \mathbb{R}^2 .

- 1. Montrer que pour tout (x, y) au voisinage de (0, 0), l'équation ci-dessus définit localement y en fonction de x et x localement en fonction de y au voisinage de (0, 0), c'est-à-dire qu'il existe :
 - un voisinage ouvert $I \subset \mathbb{R}$ de 0 et une fonction $h_1: I \to \mathbb{R}$ de classe \mathscr{C}^1 tels que pour tout $x \in I$, $x h_1(x) + e^{x^2 \sin(h_1(x))} = 1$; (2 points)
 - un voisinage ouvert $J \subset \mathbb{R}$ de 0 et une fonction $h_2: J \to \mathbb{R}$ de classe \mathscr{C}^1 tels que pour tout $y \in J$, $h_2(y) y + e^{h_2(y)^2 \sin(y)} = 1$. (2 points)
- 2. Calculer $h'_1(0)$ et $h'_2(0)$. (2 points)

Exercice 4. On considère le système d'équations suivant sur \mathbb{R}^3 :

$$S = \begin{cases} x^2 + y^2 - z^2 = 0\\ x + 2y^2 + z^2 = 3. \end{cases}$$

- 1. Montrer qu'il existe un voisinage ouvert $I \subset \mathbb{R}$ de 0 et une fonction $h: I \to \mathbb{R}^2, x \mapsto (h_1(x), h_2(x))$ de classe \mathscr{C}^1 tels que $(x, h_1(x), h_2(x))$ soit solution du système S pour tout $x \in I$. (2 points)
- 2. Calculer $h'_1(0)$ et $h'_2(0)$. (2 points)